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I n  1978, the Russian mathematician V. Kharitonov published a 
remarkably simple necessary and sufficient condition i n  order that a 
rectangular parallelpiped of polynomials be a stable set. 
"stable" is taken to mean that the p o l y n o ~ i a l s  have no roots in the 
closed right-half of the complex plane. * 

Here, 
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The possibility of generalizing this result has been studied by 
numerous authors. 
seek a necessary and sufficient condition that the set be stable. 
Perhaps the most general result is due to Barmish who takes for Q a 
polytope and proceeds to construct a complicated non-linear 
function, )I, of the  points in Q. With the notion )of stability we have 
adopted, Barmish asks that we "sweep the boundary" of the closed 
right-half plane, that is we consider the set G = (jol- e < o <  00 1, 
and for each j&G, require H(6) > 0. 

We are given a set, Q, of polynomials and we 

Barmish's scheme has the  merit that it describes a true 
generalization of Kharitonov's theorem. On the other hand, even 
when Q is a polyhedron, the definition of H requires that one do an 
optimization over the entire set of vertices, and then a subsequent 
optimization over an  auxiliary parameter. 

I n  the present work, we consider only case where Q is a 
polyhedron and use the standard definition of stability described 
above. There are straightforward generalizations of the method to 
the case of discrete stability or to cases where aertain root positions 
are deemed desirable. The cases where Q is inon-polyhderal are less 
certain as candidates for the method. 
of geometric programming to problem of findiwg maximum and 
minimum angular displacements of points in the "Nyquist locus", 
(Q(jco) I - ( < 7  < o < ( -  ). Therc is an obvious connection here with 
the boundary sweeping requirement of Barmish. 

Essentialby, we apply a method 
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Presuming that we have a polygonal set of real polynomials, 
we can begin by looking at (Q(O)) ,  a line interval, J. 
stability of Q is that J = [a,bl, where a >O. We therefore do the linear 
programming problems which minimize and maximize Re(Q(0)). 
(Actually only the minimization would be necessary). 
points as starting values, 
and look for the vertices in  Q whose image under eval(jo) have 
largest and smallest values. For stability, both must be positive. 
can employ an LP-like technique to solve this problem. 

Begin, respectively with vertices from the o = 0 problem for 
largest and smallest constants. Call these Vi and V 2 .  Draw the two 
vectors in  the complex plane from 0 to V I  and V2 respectively, and 
then construct two normals one pointing counterclockwise, and one 
clockwise. 
the transpose of the evaluation matrix, 

Necessary for the 

Using these 
we perturb the frequency, say to o = .1, 

We 

By pulling these two normals back to polynomial space by 

0 -to3 0 ... 

we can obtain "objective functions" for use in an LP step for, 
respectively, maximum and minium angle of rotation. Note that the 
objective function changes from vertex to vertex. 

Since the image of the polyhedron changes smoothly as the 
frequency is swept along the imaginary axis, there should be only 
occasional changes i n  vertex, and in  general, we should see only 
single pivots required when there is a vertex change needed. 
Finally, we simply test for the presence of a "0-penetration" of the 
convex set Q(jw) by testing the size of the angular opening: 

Max(angle) - min(angle) < R 

is necessary and sufficient for global stability of Q. 
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